

5 Application Management Mistakes
That Doom VDI Projects
Virtual Desktop Infrastructure (VDI) has never been hotter. But many VDI projects stall, or even

fail, because of five common application management mistakes. Learn what they are – and how

to avoid them – in this eBook.

IŶtƌoduĐtioŶ

When it comes to desktops – physical or virtual – it’s all aďout the applications. Every human

needs different apps for their work. If we all used the same apps, we would be happy using

Windows terminal servers as our desktops.

That’s ǁhǇ Đloud-hosted virtual desktops are growing so fast. You get the same data center-

class security and 24x7 access to your Windows applications that you get with terminal

services. But now you get the complete personalization and flexibility of having your very own

desktop.

Which brings us back to the apps. How will you deliver them? How will you update them?

How will you minimize licensing costs? How will you offload your overworked IT staff from

having to manage every little app? This is where many Citrix XenDesktop and VMware Horizon

View projects get stuck.

Organizations make 5 common mistakes when it comes to planning and implementing their

application management strategy. This eBook tells you what they are and how to avoid them,

and offers real-life case studies on customers who didŶ’t let their apps get in the way of VDI

success.

Mistake #ϭ

You CouldŶ’t Viƌtualize All Youƌ Apps

As many organizations have discovered, not all apps can be virtualized with traditional

application virtualization technology. Microsoft App-V, VMware ThinApp, and other first-

generation app virtualization tools are excellent for packaging apps in protective isolation

bubbles so they can run without conflict.

However, there are many apps that cannot be virtualized with this technical approach:

 Applications that interact with low-levels of the operating system using kernel-mode

drivers such as antivirus, firewall software, and VPN clients.

 Applications with device drivers such as scanners and printers.

 Custom and homegrown apps that require complex Setup procedures, Shell

integration, DCOM or COM+ services, and libraries that use global hooks.

Hamilton County, Indiana found itself in this situation. Its VDI project was stuck at 100 desktops

for over a year because QuickBooks, Roxio DVD burner, Dymo label writer, Track-It! help desk,

Odyssey court and justice software, and other apps required by the local government body

would not virtualize, even with the help of outside consultants.

How They Fixed It

The county got past this roadblock when the IT team implemented new desktop layering

technology for desktop provisioning, application virtualization, and image management.

Instead of isolating apps in their own bubbles, desktop layering uses a new technical approach

– file system and Windows registry virtualization, or C: drive virtualization – that enables almost

any application to be virtualized separate from the Windows OS.

As VMware’s case study on Hamilton County shows, the VDI project is now a success. 400

desktops are in production, with more being rolled out as PCs reach end-of-life. The

combination of VMware Horizon View for secure, high performance virtual desktop

connectivity and Unidesk for layered desktop management and application virtualization has

enabled all of HaŵiltoŶ CouŶtǇ’s apps to be packaged and delivered independent of its single

Windows gold image. The app layers can be delivered in any combination to any number of

desktops, making it easy for the IT staff to ŵeet the ĐouŶtǇ’s diǀeƌse app requirements.

http://get.unidesk.com/hs-fs/hub/339507/file-547950678-pdf/Assets/Case_Studies/Hamilton_County_Case_Study_-_VMware.pdf

Mistake #Ϯ

You UŶdeƌestiŵated the Tiŵe aŶd Eǆpeƌtise Needed to
PaĐkage Youƌ Apps

Even if your apps can be virtualized using isolation technology, most organizations find that the

sequencing and packaging process requires far more time and expertise than anticipated. By

the tiŵe Ǉou’ǀe fiŶished the desktop setup, pƌe-scans, post-scans, scripting workarounds,

WiŶdoǁs ƌegistƌǇ ĐhaŶges, aŶd deploǇŵeŶt, Ǉou’ll find a full day has passed. Or more.

The app virtualization vendors acknowledge this. Here is an excerpt from the Microsoft

Application Virtualization 5.0 Sequencing Guide:

App Type Description Time Scale

Moderate This is probably the most common application type. Moderate

application types might require some changes while sequencing

to function correctly, or may require no changes but have a larger

install that takes more time. In rare instances, both scenarios can

occur. Changes that might be encountered in these packages

include making changes to the registry, altering the

DeploymentConfig or UserConfig file to launch with additional

parameters and scripts, or there may be additional applications

needed to install together as a suite to allow cross-functionality.

Typical

sequencing

time:

1-4 hours

Complex These are large applications or applications that take four or

more hours to install, significant amounts of customization to

function in the virtual environment, or both. Packages like these

will normally be 3-4 GB in size and may require compression to

get the package under the 4GB App-V limit. Other hurdles you

ŵaǇ eŶĐouŶteƌ aƌe the appliĐatioŶ’s ƌeliaŶĐe oŶ files ďeiŶg iŶ a

specific place and functions hard-coded to that install. These

applications may require you to manually edit batch and

command files to point to resources in the virtual environment. If

this is the case, it is highly recommended utilizing a program that

can scan multiple files and make several changes at once. You

also may be required to install a device driver separately since

drivers cannot be virtualized. Applications of this complexity can

be sequenced, however it is imperative that, before you begin, all

the pieces must be in place. All knowledgeable resources should

be engaged and available, sequencing hardware should be better

than average, and finally, sequencing applications such as these

should be done by an experienced sequencer.

Typical

sequencing

time:

4-8 hours,

but could

be longer

depending

on the size

and number

of files

Sunrise Health hit this challenge early in its 3,000-user VDI project. Over 100 applications are

ƌeƋuiƌed ďǇ the healthĐaƌe oƌgaŶizatioŶ’s ĐliŶiĐiaŶs, nursing stations, kiosks, and administrative

staff. Pilot testing convinced the lean IT staff that trying to isolate all of its apps – and repeat

the process whenever apps needed updating – would not be viable.

How They Fixed It

Sunrise Health solved this issue with desktop layering. The layering process is so fast and easy

that packaging contests were run internally to see which IT administrator could virtualize the

most apps.

Sunrise Health has now packaged close to 100 apps as layers. The layering process typically

takes less than 30 minutes – even for complex apps – and requires no special packaging or

sequencing skills. Sunrise Health administrators select an Installation virtual machine, log onto

the machine, install the application (doing whatever they would normally do to install the app

on a regular desktop), and click Finalize. The application layer is immediately available to be

assigned to any desktop on top of SuŶƌise Health’s ĐleaŶ WiŶdoǁs OS laǇeƌ.

Read the Sunrise Health VDI case study to leaƌŶ ŵoƌe aďout the healthĐaƌe oƌgaŶizatioŶ’s
growing Citrix XenDesktop and Unidesk implementation.

http://www.unidesk.com/customers/success-story-sunrise-health

Mistake #ϯ

You DidŶ’t AĐĐouŶt foƌ Apps NeediŶg to CoŵŵuŶiĐate

As mentioned earlier, first-generation app virtualization tools use isolation technology to

package apps in pƌoteĐtiǀe ͞ďuďďles,͟ effeĐtiǀelǇ hidiŶg them from Windows and other apps.

This is perfect for running multiple versions of the same software (e.g. Java or Microsoft Access)

on the same desktop. However, for the majority of apps that do not need to be isolated, and

that need to share data, link to each other, and cross-communicate, this presents a major

problem.

If you want to stay with the isolation approach, there are two workarounds:

1. You can sequence all of the apps that need to communicate in the same package.

However, this often results in very large packages that need to be re-sequenced every

time one of the apps in the package needs updating.

2. You ĐaŶ ͞poke holes͟ iŶ the isolatioŶ ďuďďles so that the apps ĐaŶ ͞see͟ eaĐh otheƌ.
However, this adds more packaging time to an already lengthy and time-consuming

packaging process. It also ups the expertise requirements.

This is the situation that law firm Bernstein Shur found itself in. Like most law firms, Bernstein

Shur uses a wide range of Microsoft Word and Microsoft Outlook plug-ins. The plug-ins change

frequently, and must be constantly updated.

The firm tried to isolate the plug-ins so they could be updated independent of Word and

Outlook, but the plug-ins could not communicate with the base apps.

They experimented with packaging all of the plug-ins together, but that made updating them

extremely inefficient. Word, Outlook, and the plug-ins had to be re-packaged every time one of

the plug-ins changed.

How They Fixed It

As this Unidesk and VMware Horizon View case study on Bernstein Shur shows, layering was

the solution.

Layered apps are not isolated. They appear to Windows and to other apps as if they are

natively installed. They show up in Windows Add/Remove Programs, and their files appear in

the expected directories.

Bernstein Shur has successfully virtualized all of its plug-ins as separate layers to make patching

and updating fast and easy. Yet the plug-ins all work with their base applications as expected.

http://www.unidesk.com/customers/vdi-success-story-bernstein-shur-law-firm

Mistake #ϰ

You Tƌied to Deliǀeƌ Apps IŶ Youƌ WiŶdoǁs Iŵage

Some organizatioŶs get so fƌustƌated ďǇ the fiƌst thƌee ŵistakes that theǇ saǇ ͞EŶough alƌeadǇ!
I’ŵ just goiŶg to stiĐk ŵǇ apps iŶ my base Windows iŵage aŶd deliǀeƌ theŵ that ǁaǇ!͟

DoŶ’t ŵake this ŵistake.

Building every possible app into a single Windows image will force you to license every app for

every user. Plus, Ǉou’ll haǀe to update the master image every time you need to update one

app. If Ǉou’ƌe oŶe of the .ϬϬϭ% of oƌgaŶizatioŶs ǁho ĐaŶ affoƌd to do eitheƌ of these thiŶgs,
move on to Mistake #5.

You might saǇ ͞I’ll just Đƌeate a feǁ diffeƌeŶt iŵages eaĐh ĐoŶtaiŶiŶg diffeƌeŶt sets of apps.͟

DoŶ’t do this eitheƌ.

Most organizations that go down this path inevitably find that two images leads to four, four

becomes eight, and soon, instead of patching Windows once, theǇ’ƌe doing it 20 times every

Patch Tuesday.

This is the last thing State of Ohio Department of Developmental Disabilities wanted. One of

the goals of its 1,400 desktop VDI project was to simplify Windows management, and move

some of its desktop support staff to more interesting, strategic projects that would improve the

quality of services offered to the state’s deǀelopŵeŶtallǇ disaďled ƌesideŶts.

How They Fixed It

Desktop layering enabled them to achieve their goal. Read the VMware Horizon View and

Unidesk case study on State of Ohio Department of Developmental Disabilities to see how the

agency layered more than 60 apps to keep its Windows OS layer clean. Because all 1,400

desktops can be kept up to date by patching Windows or any of its 60 app layers once, the

agency was able to redeploy 7 IT support managers to other forward-facing projects.

http://www.unidesk.com/customers/ohio-department-of-developmental-disabilities
http://www.unidesk.com/customers/ohio-department-of-developmental-disabilities

Mistake #ϱ

You Foƌgot Aďout OŶe-Off, Ad HoĐ Apps

Even if you use layering technology to make virtualizing your standard and departmental apps

fast and easy, there is still a boatload of one-off, ad hoc apps that are used by a few users. If

you try to centrally deliver all of these, Ǉou’ll dƌiǀe Ǉouƌself ĐƌazǇ. So ǁhat aƌe Ǉouƌ optioŶs?

If you deploy non-peƌsisteŶt desktops, Ǉou doŶ’t ƌeallǇ haǀe oŶe. AŶǇ apps that IT or end users

install on non-persistent desktops will be lost after a patch, reboot, or logoff.

This is what Colby-Sawyer College discovered when it looked at deploying non-persistent

desktops for its administrative staff. Desktops that wipe themselves clean might be ideal for

labs where you want each student to start fresh. However, for the college’s staff users who

expect their unique plug-ins and apps to always be present, non-persistent virtual desktops

would not be any better than their old Windows terminal server sessions.

How They Fixed It

The Đollege’s solutioŶ ǁas to pƌoǀisioŶ 275 persistent desktops for its staff using desktop

layering technology. Power users with administrative rights are allowed to install one-off apps

on their own to ease the burden on the IT staff. For less savvy users, the IT staff installs logs

onto their VM as administrator and installs the one-off apps for them. In both cases, the user-

installed and IT-installed apps survive logoffs, reboots, and Windows patches.

Layering has eliminated the old issues of persistent desktops using too much storage and

requiring a full Windows image for every desktop. All 275 desktops are provisioned from a

single Windows gold OS layer that only needs to be patched once. 65 apps have been

virtualized as independent app layers that are also stored and updated once.

The staff’s customizations – including their user-installed apps – are captured in each desktop's

Personalization layer. To fix most desktop problems, the college's help desk simply rolls the

Personalization layer back to a previous snapshot and reboots the desktop.

Read the blog on Colby-Sawyer’s VMware HorizoŶ View aŶd UŶidesk iŵpleŵeŶtatioŶ to learn

more.

http://blog.unidesk.com/persistent-desktops-faculty-staff-college-vdi-made-easy

SuŵŵaƌǇ

You should now be equipped to avoid the 5 common application management mistakes that

can doom VDI projects. With an application management strategy that incorporates next-

generation, industry-proven layering technology, you can ensure that apps doŶ’t Đoŵe ďetǁeeŶ
you and your VDI success.

Unidesk Corporation, 313 Boston Post Road West, Marlborough, MA 01752 USA Tel 508-573-7800 Fax 508-573-7801

Copyright © 2014 Unidesk Corp. All rights reserved. This product is protected by U.S. and international copyright and intellectual property

laws. Unidesk is a registered trademark of Unidesk Corp. in the United States and/or other jurisdictions. All other marks and names mentioned

herein may be trademarks of their respective companies. Item No: UNI-EB-5-APP-MANAGEMENT-MISTAKES

